Telegram Group & Telegram Channel
Какой метод лучше оценивает неопределенность модели: deep ensembles или Monte-Carlo (MC) dropout

Deep ensembles чаще дают более точную оценку неопределенности, особенно на данных вне распределения (OOD).

Ключевые различия:
✔️ Deep ensembles — обучают несколько независимых моделей и усредняют их предсказания. Это улучшает устойчивость к OOD-данным и повышает точность вероятностных оценок.
✔️ MC-dropout — использует дропаут во время инференса для моделирования неопределенности, что дешевле вычислительно, но менее эффективно в сложных сценариях.



tg-me.com/ds_interview_lib/815
Create:
Last Update:

Какой метод лучше оценивает неопределенность модели: deep ensembles или Monte-Carlo (MC) dropout

Deep ensembles чаще дают более точную оценку неопределенности, особенно на данных вне распределения (OOD).

Ключевые различия:
✔️ Deep ensembles — обучают несколько независимых моделей и усредняют их предсказания. Это улучшает устойчивость к OOD-данным и повышает точность вероятностных оценок.
✔️ MC-dropout — использует дропаут во время инференса для моделирования неопределенности, что дешевле вычислительно, но менее эффективно в сложных сценариях.

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/815

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Библиотека собеса по Data Science | вопросы с собеседований from br


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA